いっしきまさひこBLOG

AI・機械学習関連、Web制作関連、プログラミング関連、旅行記録などなど。一色政彦。

AWS re:Invent 2019 re:Cap | AI/ML 聴講ノート

※これはセミナー聴講時の個人的なノートをそのまま公開したものです。誤字誤植や勘違いがある可能性があるのでご了承ください。

  • AWS re:Invent 2019 re:Cap | AI/ML - connpass
  • アンケート回答者はプレゼント資料をダウンロードできた(手元に資料あるけど、メモのみ共有)
  • じっくりと説明するというよりは速報的に次々と説明があったので、気になった部分だけメモりました

AWSのAIサービスに関するアップデート

Amazon Rekognition Custom Labels

Amazon Comprehend

  • 日本語対応

Amazon Transcribe

  • 日本語対応

Amazon Transcribe Medical

  • 医療向けの高精度な音声文字起こしサービス
  • まだ英語のみ

Amazon Kendra

  • 機械学習を利用した高精度な文書検索
  • まだ英語のみ

Amazon Fraud Detector

  • 機械学習による不正検知サービス

Amazon CodeGuru

  • コードレビューの自動化と性能改善のためのガイドを行う開発者向けのサービス

Contact Lens for Amazon Connect

  • コンタクトセンターにおける業務をAIで効率化するためのサービス

AWSの機械学習ハンズオンのためのサービス

DeepComposer

DeepRacer

  • ステレオカメラなどいろいろアップデート

Amazon SageMakerのアップデート

Amazon SageMaker Studio

  • SageMakerの各機能を呼び出せるWeb上の統合開発環境
  • 対応リージョン:オハイオ

Amazon SageMaker Autopilot

  • 表データに対して分類/予測を行う機械学習のAutoML機能
  • 東京リージョンでも利用可能

Amazon SageMaker Processing

  • SageMaker Pricessing SDK
  • データの前処理/後処理をバッチで行える機能

Amazon SageMaker Debugger

  • SageMaker Debugger SDK
  • 学習時の異常出力などの問題(勾配の消失など)を検出
  • TensorFlow、Keras、Apache MXNet、PyTorch、XGBoost などに対応
  • テンソルの急激な増加や消滅(NaNまたはゼロ値に達するパラメーター)、勾配の爆発や消滅、変化しない損失などの一般的な問題

Amazon SageMaker Experiments

  • SageMaker Experiments SDK
  • 学習を改善するための試行錯誤を支援する機能

Amazon SageMaker Model Monitor

  • MLモデルの品質を維持する機能

Amazon Augumented AI

  • 推論結果を人間が修正するワークフローを構築する機能

Amazon SageMaker Operators for Kubernetes

Deep Graph Library (DGL) がSageMakerで利用可能

AWS Step Functions Data Science SDK

Amazon AthenaでSQLクエリからML実行

Amazon Aurora Machine Learning

マルチモデルエンドポイント (MME) が利用可能に

MLインフラストラクチャのアップデート

Inf1インスタンス

  • 機械学習の推論を低レイテンシかつ安価に実現する推論用チップ「AWS Inferentia」を搭載した新インスタンス

AWS Inferentia

  • AWSによる独自設計推論プロセッサ

AWS Neuron SDK

  • AWS Inferentiaで実行するにはコンパイルが必要

Amazon Braket

読書感想『やり抜く力 GRIT(グリット)』

書籍紹介

 2016年9月出版の本ですが、audiobook.jpで人気だったので聴いて&読んでみました。Audible版やKindle版もあります。

 オーディオブックの再生時間は12時間6分。そこそこ多い文量です。

概要紹介と感想

 内容としては、才能や能力よりも「やり抜く力」(=「GRIT(グリット)」と呼ぶ)の方が大事ということを、研究例を用いたりしながら解説する本です。

  • PART 1 「やり抜く力(グリット)」とは何か? なぞそれが重要なのか?
  • PART 2 「やり抜く力(グリット)」を内側から伸ばす
  • PART 3 「やり抜く力(グリット)」を外側から伸ばす

という3部構成で、パート1で理論を知り、パート2とパート3で理論の実践方法について言及しています。

 理論については納得のいく内容だと思います。粘り強く頑張る人が、結局は活躍していくものだと思います。しかし人はとかく、「あの人は頭が良い」「私には才能がない」などと、無意識のうちに「才能・能力の高い/低い」を重要視してしまいます。IQや授業の理解度とかを見て、「この人はこの人よりすごい」というように判断しがちです。しかし最終的に勉強ができるようになるのは、理解が悪くてもしつこく質問する子供だったり、最初は「この人は才能がないな」と思った人でもその後の粘り強い頑張りで人並み以上に成長していったりします。グリットの高さ(=グリッドスコア)こそ、人の活躍可能性を測れる指標ではないかと。そう思わされます。

 よくよく考えて見ると「そりゃそうだよね」と思う内容です。なので内容に新規性はありません。むしろあらためてそこに気付かせてくれる本なのかなと思いました。

 実践については、子育て、子供への教育についての説明が印象的でした。子供への教育方法について考えてみたいと思う人は、参考までに手に取ってよい本だと思います。

 ただし、実践のための結論や具体的な手法を提示しているわけではないと思います。よって、自分で「グリットを伸ばす方法」を考えて、自分で実践手法にまで落とし込む必要はあります。もちろん誰にでもフィットする銀の弾丸などないのだろうから、それは当然だろうと思いますが、「結論や手法が教えて欲しい。何も考えずにその通りにやるから」っていう人には向かない本かなと思います。

 以下、引用しながら、私自身が気に入った内容をまとめていきます。

なぜ「やり抜く力」が重要か?

 わたし自身は何にも才能があるわけではないけれでも、「考えれば思い当たるところがあるよな」と思ったのが次の文章(引用)です。

だが、成功の要因はそれだけではなかったのだ。インタビューで多くの人が語ったのは、ずば抜けた才能に恵まれながらも、能力をじゅうぶんに発揮しないうちに、挫折したり、興味をなくしたりして辞めてしまい、周囲を驚かせた人たちの話だった。
失敗しても挫けずに努力を続けるのは――どう考えてもたやすいことではないが――きわめて重要らしかった。「調子のいいときは、やたらと意気込んでがんばる人もいますが、そういう人はちょっとつまずいただけで、とたんに挫けてしまうんです」

 子供の時、水泳が得意だったけど、途中で辞めました。その後、小学校で水泳の選手にもなったけど、そこそこ頑張っていたと思いますが、それもそこそこ。水泳がすごく好きというわけでもなかったのだけど、上の文章の内容はちょっと当てはまるのかなぁとは思います。

 次の文章もあるあるかもしれません。

どうやら、ただ数学に向いているだけではよい成績は取れないらしい。数学の才能があるからといって、数学の成績がよいとは限らないのだ。
これは私にとって驚きだった。一般的に数学は、数学的な才能のある生徒ほどよくできて、数学の苦手な生徒との差が著しいと考えられている。正直なところ、私も最初はそう思っていた。呑み込みの速い生徒は、つねにほかの生徒たちよりもできるはずだと思っていた。それどころか、もともと数学の得意な生徒とほかの生徒たちの成績の差は、大きくなるいっぽうだと思っていた。

 しつこく粘り強く数学に取り組む人が、結局は成績が良いようです。「僕は頭が悪いから分からない、できない」と言う人はやはり、数学の成績が良い人よりも、数学の勉強を真剣に長い時間やっていないのではないかと思います。

 このような才能を重要視して、努力を軽視するのは、ついついやってしまいがちです。例えば次の文章は、全国調査の質問とのことです。

「成功するためには、才能と努力のどちらがより重要だと思いますか?」
アメリカ人の場合、「努力」と答える人は「才能」と答える人のおよそ2倍だ。運動能力に関する質問でも、同じような結果が出る。では、つぎの質問はどうだろう?
「新しい従業員を雇うとします。知的能力が高いことと、勤勉であることでは、どちらのほうが重要だと思いますか?」
この場合、「勤勉であること」と答える人は、「知的能力が高いこと」と答える人の5倍近くにものぼる。

 いや分かりますよね。例えば自分が採用担当で、人工知能エンジニアを雇いたい場合に、「東京大学の博士課程出身で、こんなことができます」という人と、「とにかく独学で頑張った結果、こんなことができます」という人がいたら、「こんなこと」が同じレベルだとしたら、やっぱり前者を優先してしまうのではないかと。無意識のうちに「才能」の方を重要視してしまう。でも本当は、上で書いた通り、やり抜く力が強い方がより良い結果を出しやすい。難しいもんです。

才能と努力による「達成」の方程式

 著者は「達成」に関する論文を書いたそうです。その論文には、「達成」に至るまでの過程を説明する単純な方程式が示されているとのこと(図は自作して引用)。

f:id:misshiki:20191204195504p:plain
「達成」を得るには「努力」が2回影響する

「才能」とは、努力によってスキルが上達する速さのこと。
「スキル」は、「努力」によって培われる。
「達成」は、習得したスキルを活用することによって表れる成果のことだ。

 つまり、才能をバネに努力すれば効率的にスキルが身につく。通常はこれが目立つので才能重視になるのでしょう。しかしそれだけではないというのが著者の主張だと思います。

 スキルを使ってさらに努力すること。これによって人は生産的になり、達成をつかめるのだと。「才能」と「努力」を区別して、「スキル」に対しても「努力」が必要だと考えるのが大事なようです。

「情熱」と「粘り強さ」を発揮して目標を達成する方法

 ここで「グリットスコア」という「やり抜く力」の計測方法が出てきますが、ぜひ本を買うなどして確かめてみてください。

 で、「やり抜く力」を高めるにはどうすればよいか。著者はウォーレン・バフェット氏の発言を紹介して「優先順位を決めるための3段階方式」を示しています。

  1. 仕事の目標を25個、紙に書き出す。
  2. 自分にとってなにが重要かよく考え、もっとも重要な5つの目標にマルをつける(5個を超えてはならない)。
  3. マルをつけなかった20個の目標を目に焼き付ける。そしてそれらの目標には、今後は絶対に関わらないようにする。なぜなら気が散るからだ。よけいなことに時間とエネルギーを取られてしまい、もっとも重要な目標に集中できなくなってしまう。

 これは「やらないこと」を決める作業ですね。

 これを著者はアレンジして、

 4. 「これらの目標は、共通の目標にどれくらい貢献するか」と考える。

という項目を追加し、目標をピラミッド形に描くことを推奨しています(図はカスタマイズ版を自作して引用)。

f:id:misshiki:20191204195547p:plain
左にいくほど重要な目標になる

 ややもすれば中位の目標だらけになってしまいます。キモは、「最上位の目標」を決めることです。

 そしてピラミッドから外れる関係のない目標は削っていきます。何でも必死に頑張っても意味がないですから。この「中位の目標」が5個でよいと思います。

 そして中位の目標を達成するための具体的なTODOリストを「下位の目標」として記載すればOKだと思います。このピラミッドによって、すべての目標が関連性を持つことになります。

スキルを伸ばす方法

 スキルを伸ばすには、最上位の目標に向かって努力を粘り強く続けるしかないと思います。しかしそれだけでは不十分です。効率よくスキルを高めるにはどうすればよいか。これに関して著者は次のようなヒントを書いています。

ふつうの人びとと違って、エキスパートたちは、ただ何千時間もの練習を積み重ねているだけでなく、エリクソン(認知心理学者のアンダース・エリクソン氏)のいう「意図的な練習」(deliberate practice)を行っている。
1. ある一点に的を絞って、ストレッチ目標〔高めの目標〕を設定する。
2. しっかりと集中して、努力を惜しまずに、ストレッチ目標の達成を目指す。
3. 改善すべき点がわかったあとは、うまくできるまで何度でも繰り返し練習する。
では……そのあとは? ストレッチ目標を達成したあとは、どうするのだろう?
エキスパートたちは新たなストレッチ目標を設定し、弱点の克服に努める。小さな弱点の克服をこつこつと積む重ねていくことが、驚異的な熟練の境地に至る道なのだ。

 これをどう読み解くかは人それぞれだと思いますが、わたしは「改善」と「弱点克服」をコツコツとやっていことが鍵なのだろうなと感じました。自分は満遍なく全部やってしまうことが多いです。しかし、弱点克服に集中して、弱いところを潰していくように努力する方がより良いと、この本を受けて考えています。わたしはそのように、上記の引用部分を読み解きました。

 弱点は取り組むのが大変だから弱点になっている可能性が高いです。著者は「ラクな『練習』はいくら続けても意味がない」と言及しています。

 著者は日本語の「七転び八起き」という言葉が好きだそうです。その精神で努力し続けるようにしたいですね。

この本のオススメ度

 スポーツ選手の話も出てきますが、頻繁に子供の教育の話が出てきます。というか私の印象によく残っています。よって、前述したことの繰り返しですが、「子供の教育はどうすればよいか」と考えている人が、思考材料として読みたいというなら最適ではないかと思います。

 繰り返しますが、とかく人は努力ではなく、才能を優先します。子供も同じで、例えば算数の成績が思ったよりも悪いときに、

「努力が足りなかったから」ではなく、「能力が足りなかったから」失敗したと思う生徒

が多いのではないでしょうか。人の努力は見えにくいものです。だから、能力のせいにしてしまう。しかし「能力が低い」と考えた子どもたちは「無力感」にさいなまれるようになり、さらに努力(この場合は算数の勉強)をしなくなってしまいます。

 よって逆に成績が良かったときにも、能力・才能ではなく努力を褒めるべきです。例えば「算数ができるね! 頭良いね、さすが」ではなく、「よく努力したね、すばらしい」のように。このような「成長思考」「やり抜く力」を伸ばす表現が、本書の中でまとめられていますので、ぜひ購入して確かめてみてください。

JuliaTokyo #10 聴講ノート

※これはセミナー聴講時の個人的なノートをそのまま公開したものです。誤字誤植や勘違いがある可能性があるのでご了承ください。


18:40-19:00 スポンサーセション


19:00-19:30 ごまふあざらし(@MathSorcerer)さん

Model inference using Julia


19:30-19:50 Shuhei Kadowaki(@kdwkshh)さん

Juno


20:00-20:30 眠気.jl(@julialangisthe)さん

  • MacBookしまってしまったのでメモなし

Juliaでシミュレーション高速化


20:30-20:50 ライトニングトークなど

  • MacBookしまってしまったのでメモなし

あんちもん2(@antimon2)さん

名古屋の勉強会事情

金子さん

hsugawa(@hsugawa)さん

  • 資料未公開

参加者プレゼントで3名のプレゼントに当たった

機械学習モデル解釈ナイト (エンジニア向け) 聴講ノート

※これはセミナー聴講時の個人的なノートをそのまま公開したものです。誤字誤植や勘違いがある可能性があるのでご了承ください。

モデル解釈の知識は浅かったので非常に良かったです。
2時間でかなり詰め込んだ感じがあったので、One-dayイベントでこのテーマで行けるのかなと思いました。
あとAutoML関連もよく知らないので、勉強会があるといいな。
(テーマに関係ないけど、DLLabって最近、運営体制変わってきたのかなって思っている。)

BlackBox モデルの説明性・解釈性技術の実装

表形式データ

  • 局所的な説明: LIME、SHAP、Anchors
  • SHAPがオススメ、Anchorsはライブラリが未整備などの欠点がある

画像データ

  • Grad-CAM、LIME、SHAP
  • Grad-CAMがオススメ、LIMEは使いづらい

テキストデータ(tf-idf)

  • LIMEでまずまず機能する

テキストデータ(BERT)

  • Attention
  • influence:説明したいテストデータと最も良く似た訓練データを1つ探す手法。日本ではあまり知られていないがオススメ

一般化線形モデル (GLM) & 一般化加法モデル(GAM)

  • 本セッションでは、最も古典的かつ重要な解釈可能モデルの一つである GLM と、その応用技術である GAM について、歴史とアルゴリズムを概観します。さらに、実際に解析する場面を想定し、GLM/GAM に対するモデル解釈で気をつけるべきポイントもご紹介します。
  • 山口順也氏 日本マイクロソフト株式会社
  • 一般化線形モデル (GLM) & 一般化加法モデル(GAM)

  • Linear Regression、GLM(Generalized Linear Regression)、GAM(Generalized Additive Model)、GA2M(Generalized Additive 2 Model)にフォーカスして話す

一般化線形モデル(GLM)

  • 歴史から: 1972年にGLMを定式化、1982年に教科書…
  • 誤差が指数型分布族の分布に独立に氏が従うことを仮定する統計モデル

一般化加法モデル(GAM)

  • 1990年に、GLMの問題点を受けて提案された統計モデル
  • GLMでは重み付けしていたスコアの計算をもっと柔軟に

一般化加法2モデル(GA2M)

PythonでのGLM/GAMの使い方


AutoML のモデルを Azure Machine Learning Interpret で解釈してみる

AutoMLとは

  • 機械学習のプロセスを自動的に処理するテクノロジー
  • パラメーターチューニングのところだけ自動化、アルゴリズム選択も特徴量エンジニアリングも自動化する 2種類がある
  • メリット: 試行錯誤が楽になる、AIの民主化、モデルを大量に生成できる

Azureが提供するAutoML

モデル解釈

Amazon Transcribeの日本語テープ起こしを試してみたけど...

Amazon Transcribeが日本語対応して、もしかして精度高いのではないかと期待して、とあるセミナーのセッション「30分」(日本語)を自動「テープ起こし」してみたけど、次のような結果でした。

f:id:misshiki:20191126121243p:plain
自動「書き起こし」結果

意味不明...。単語単語でところどころ拾えているところはあるんだけど、使いものにはならないね。これを修正するよりは、手動でテープ起こしした方がまし。

日本語の自動「書き起こし」はまだまだまともなものは出てこなさそうです。手動で書き起こしている最中に、自動「書き起こし」予測とかで入力を補助してもらえたりすると作業が効率化するんだろうか。そういうのないけど。

読書感想『ダントツになりたいなら、「たったひとつの確実な技術」を教えよう』

書籍紹介

 1カ月前ぐらいに読んだ本です。Kindle Unlimitedで読めます(※2019/11/17時点)。あとAmazonだと単行本が買えなくなっています...。

 オーディオブックの再生時間は6時間6分。短めですね。

概要紹介と感想

 内容としては、ノルウェーでオリンピック選手やトップクラス経営者を顧客にメンター(=仕事上の助言者)で活躍する著者「エリック・ベルトランド・ラーセン氏」による方法論を説明するもの。どうやれば人は100%の実力が出せるのかを、例を挙げながら説明しています。

  • パート1 日常生活を変える
  • パート2 [実践篇]本番力をつける

という2部構成で、パート1で理論を学び、パート2であたかも著者にコンサルティングを受けてるかのような形で読める内容となっています。そのため、理論を自分自身にも応用しやすいかもしれません。

 以下、引用しながら、私自身が気に入った内容をまとめていきます。

人生を俯瞰で見る=自分の「価値観」と「欲求」を正確に知ること

 まずは序章で、

自分が思っているよりも、はるかに上に行けるのだ!

とガツンとかましてきます。そして「ダントツの人」とそうでない人は何が違うのかという疑問に対して、それは驚くほどわずかな違いでしかなく、

ひと言でいうと、日常の小さな『正しい決断』を下すのが上手なのだ

と説明。つまり「ダントツの人」は、才能ではなく、小さな選択の積み重ねでできていると言っているわけです。そのためには、

自分に「正しく質問する」習慣をつけること

が大切だそうです。つまり自問自答しろと。例えば朝起きたら「あと5分寝るか?」「今日は何をしようか?」など。そういった質問をしたり回答をしたりするためには、自分自身がどんな価値観と欲求を持っているかを見つめ直す必要があります。

最初にすべきなのは、己を知り、自分の価値観と欲求を知ること

 これがこの本の根幹的なメッセージの一つなのだと諭しています。自分の価値観と欲求を知るには、まずは自分の「現在位置」をはっきりとさせる必要があります。

「まず人生を俯瞰で見てください」

 当然でやっている人も多いと思いますが、まずは自分の人生全体を見つめ直し、その中で今の自分はどのあたりかを考えてみることが大事ですよね。

人間は、本質的に変化を嫌う生きもの

 だからこそ、変化を引き起こすには人生を俯瞰で見ることが大切。それによって正しい選択ができるようになります。それだけでなく、「急いで実施しよう」という意志力も生まれます。人生は無限ではないのだから、

人生を俯瞰で見て、いつかは終わるという意識を持つ

ことが大事です。

成功に備える=意識のトレーニング

 価値観や欲求に基づく夢や目標が打ち立てられたら、そこに向けて努力していきます。とはいっても、不安や失敗への恐れなどが沸き上がってくるものです。それは人間が持つ自然な感情なわけですが、「ダントツの人」になるにはその感情をコントロールしていく必要があります。これに対し著者は、

私が行うトレーニングのうち、20パーセントは最悪のシナリオへの備えであり、80パーセントは成功に備えるものである

と答えています。つまり不安に備える代案も用意しておけと。そうすることで夢や目標に、より効果的に進めると著者は主張しています。

目標を具体化するには

 では、その目標をどうやって設定すればよいのか。目標設定は企業が得意です。

あなたが本気で自分を変えたいなら、まず、あなた個人を「ひとつの会社に見立てる」ことを試してほしい。重役会議にあてる時間をつくり、業務明細表を作成し、ゴールを決めて戦略計画を立てる。そして、あなた自身の「理念」を決める。そうすると、よい目標を設定して、そこに到達するために必要なステップを踏むことが、より簡単になるだろう。

目標に到達するためのプロセス

 著者は、目標に向かって進むためには、努力を「自動化」、つまり習慣化することが大切だと説きます。

私はこの局面を「段取り中」と呼ぶ。いわば、あなたが目標にたどりつくまでに通過しなければならないすべての平日だ。

 目標へのプロセスは、地味で粘り強さが求められる局面です。だからこそ、

目標を常に思い出し、自分が何と戦って、何を手に入れたいのかを、確認する

のが大事で、週に一度は絶対にこれを確認すべきだとしています。自己啓発本では、よく張り紙するだの、目標を毎日見て確認するだの、があると思いますが、そういったたぐいのことはあらためて重要だということですね。

どんな分野でも優秀になれる

 この本で「1万時間の法則」というのを知りました。最近、オーディオブックで買いやすいので自己啓発本を何冊か読んだら、有名な話みたいでよく出てきます。

グラッドウェルが著書のなかで何度も立ち戻っているのが「1万時間の法則」である。どんな分野でも成功の鍵を握るのは鍛錬であり、1万時間を費やせば、平凡な人間でも、特定の分野において世界レベルの能力を得られる、というのだ。

 1万時間はかなりの時間です。毎日10時間、目標に向かって努力すると、1000日(=2年と9カ月)、つまり3年もかかります。確かにそれだけ専念してやれれば、人より頭一つ飛び抜けられるんだろうなとは思います。

 この本は、目標を毎日意識して、長期に渡って自分を律しながら不屈の努力を粘り強く続けることの大切さを、色んな表現で説得してきます。それによって、「自分が思っているよりも、はるかに上に行けるのだ」と、自らの体験(序章の話)を通して力説しています。

この本のオススメ度

 上記の内容に納得して、その概念や意識を自分の中にすり込みたいという人は買ってもよいと思います。

 ただし、内容は浅いなというか、(人生を俯瞰するとか目標設定とか)よくある話の印象で、この本自身がダントツではない気がします。かつアスリート寄りの内容も多く、パート2で「三大ツール」という手法が出てくるのですが普通の人には使いづらい気がします。

 「1万時間の法則」は気に入りました。基準が明確になって、努力しやすい気がするので。でも言葉一つなので、それを理由にあえて本を買うほどまでではないのかなと……。この本に関してはこういう評価です。

読書感想『スタンフォードのストレスを力に変える教科書』

書籍紹介

 最近、本を大量に読んでいるのですが、文字でひたすら読むのはつらくて、オーディオブックで耳でも聞きながら読んでいます。そうやって最近、読んだ中で、一番ボリュームがあったのがこの本です。

 再生時間は11時間18分。1.5倍速で読んだので、約7時間30分ぐらいかかりました。ネットで検索したら、4~5時間で読んでいる人がいるのですが、読むの速いですね...

概要紹介と感想

 内容として、「ストレスは体に悪い」という情報そのものによって、ストレスが体に悪く作用するという実例や研究を徹底的に実証的に説明している本です。エッセンスだけ抜き出すと、シンプルなのですが、研究の説明などが入るのですごいボリュームに。このなかなか進まない感じが挫折しやすい本だなぁと感じます。みんな最後まで読めているのでしょうか。

 確かに思い起こしてみると、受験のようなストレスがあるから勉強するのだし、そうやって頑張るから達成感が得られます。「ストレスは悪者」と一律に決めつけるのはおかしいですね。むしろ、レジリエンス(=立ち直る力)を高めるために、進んでストレスを探すのもよい。つまり「ストレスを利用して自分を成長させるきっかけにすればいい」と。最後の方はそういう主張にまで持っていっていました。

 それでメモっておきたい内容があったので、「引用」ということでここに紹介しておきます。

ストレスを力に変えるエクササイズ

 本文中にちょこちょことエクササイズが出てきます。たくさん出てくるのですが、これはメモっときたいと思ったものだけです。次のエクササイズは227~228ページに掲載されています。

【引用】1日にひとつ、誰かの役に立つ

 行き詰まったときには、毎日していること以外に、誰かのためにできることを探してみましょう。「そんなひまも余裕もないのに」と思うかもしれませんが、だからこそ、あえてそうすべきなのです。それを毎日の習慣にしてもよいかもしれません――1日にひとつ、誰かの役に立てる機会を見つけるのです。そうすれば、あなたの体と脳は積極的によい行動を起こせるようになり、勇気や希望やつながりを実感できます。
 どうせならより大きな効果を得るために、ふたつの方法があります。ひとつは、毎日同じようなことを繰り返すのではなく、なにか新しいことや意外なことをすること。そうすれば、脳の報酬系への刺激がよけいに大きくなります。
 もうひとつは、スピーチのときに身ぶり手ぶりを大きくするのが効果的なのと同じで、ささいなことが大きな効果をもたらすので、誰かの役に立てる機会をただ待っているのではなく、小さなことでも自分にできることを見つけること。
 わたしは学生たちには、周りの人のためにどんなことができるか、柔軟な発想で考えるように勧めています。たとえば、誰かに感謝の気持ちを伝えるとか、相手の話にしっかりと耳を傾けるとか、相手の言葉を善意に解釈するとか、そんなことでもいいのです。
 これまでに見てきた、マインドセットを変えるための方法(「自分にとって大切な価値観を思い出す」「心臓がドキドキするのは、体が行動を起こす準備を整えているしるしだと考える」など)と同じで、わたしたちの小さな選択が思いがけない効果をもたらし、ストレスの感じ方が大きく変わります。

その他、思ったこと

 結局は、モノの捉え方、考え方次第で、いろいろと好転して、逆に自分の力に応用できるということだ思います。日本語で「苦境」とかではなく、全部「逆境」と捉えるといいのかなと思いました。「苦境」は苦しい状況が続くイメージですが、「逆境」はあくまで進んでいる中で出てきた障害という感じです。「逆境」だと捉えるマインドセット(=心理状態)で考えて行動すれば、結果的に取る行動がまったく異なってくることが何となく想像できますよね。

 あとは、本当に苦しい状況や孤独な状況にある場合は、それが自分だけだと考えないことが大切みたいです。他の人も同じようにつらい体験をしていると考える。これは「コモン・ヒューマニティ」というらしいです。好きなテレビ番組にテレ東の「家、ついて行ってイイですか?」があるのですが、家についていって話を聞くと、まったく想像できないような苦しいことや楽しいことなどを人々はさまざまに抱えているものだと分かります。顔を見るだけでは分からないんですよね。

 もし本当に苦しいストレス状況になった場合は、コモン・ヒューマニティを思い出してください。あなたは1人ではない。あなたは他の人とつながっている存在であり、あなた個人よりもっと大きなものの一部だと考えて逆境に立ち向かうことが、大いに役立つとのことです。

オーディオブック版の特典:著者インタビュー

 オーディオブックでは最後に、著者のケリー・マクゴニガルさんにインタビューした音声が収録されていました。最初全部英語か~って思ったら、後で日本語翻訳音声も入っていました。

 その中でも特に気に入った発言があったので、最後にそれも引用しておきます。

【引用】1日1分で確実にレジリエンスを高めるためのエクササイズ

 「自分の基本的な価値観は何か?」「自分にとって最も大切なことは何か?」を考えてみることをお勧めします。私自身が毎朝ベッドから起き上がる前に、これをやっています。これならとても簡単なので、1分でできます。
 それは「あなたが何を大切しているのか?」を振り返り、心にそれを覚えさせておくということです。これを行うと、日々のストレスと向き合う中で、「自分が一体何を気にしているか?」が分かるのです。
 1日に1度でもこの作業を行っている人は、多忙なビジネスパーソンが直面するようなストレスに対しても、自分をコントロールできていると実感し、希望を持ち、可能性を感じられることが研究によって明らかになっています。